位置:成果数据库 > 期刊 > 期刊详情页
大数据环境下的推荐系统
  • ISSN号:1007-5321
  • 期刊名称:《北京邮电大学学报》
  • 时间:0
  • 分类:TP18[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]北京邮电大学智能通信软件与多媒体北京市重点实验室,北京100876
  • 相关基金:国家自然科学基金项目(60872051); 北京市教育委员会共建项目
中文摘要:

信息过载是大数据环境下最严重的问题之一,推荐系统作为有效缓解该问题的方法,受到工业界和学术界越来越多的关注.如何充分利用丰富的用户反馈、社会化网络等信息进一步提高推荐系统的性能和用户满意度,成为大数据环境下推荐系统的主要任务.首先,对近几年大数据环境下的推荐系统进行了综述,对大数据和推荐系统进行了概述,对推荐系统在传统环境下和大数据环境下的区别进行了辨析;然后,根据层次化的框架对推荐系统关键技术、效用评价以及应用实践等进行了概括、比较和分析;最后,对大数据环境下推荐系统有待深入研究的难点和发展趋势进行了展望.

英文摘要:

Information overload is one of most critical problems in big data, and recommendation systems which are powerful methods to solve this problem are coming under growing attention by industry and aca- demia. The main task of recommendation systems in big data is to improve the performance and accuracy along with user satisfaction utilizing user feedback, social network and other information. A survey of the recommendation systems in the big data is proposed, which includes the summarization of big data and recommendation systems, the differences between the recommendation systems in traditional environment and in big data, key techniques, evaluation and typical applications according to a hierarchical framework. Finally, the prospects for future development and suggestions for possible extensions are also discussed.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《北京邮电大学学报》
  • 北大核心期刊(2011版)
  • 主管单位:教育部
  • 主办单位:北京邮电大学
  • 主编:刘杰
  • 地址:北京海淀区西土城路10号195信箱
  • 邮编:100876
  • 邮箱:byxb@bupt.edu.cn
  • 电话:010-62281995 62282742
  • 国际标准刊号:ISSN:1007-5321
  • 国内统一刊号:ISSN:11-3570/TN
  • 邮发代号:2-648
  • 获奖情况:
  • 美国工程信息公司(Ei)数据库收录期刊,1999年全国优秀高等学校自然科学学报及教育部优秀...,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:7684