设{Yn,-∞〈n〈+∞}是双向无穷的END随机变量序列(不必同分布),{an,-∞〈n〈+∞}是绝对可和的实常数序列,该文利用END列的Rademacher-Menshov型矩不等式,得到了移动平均过程{Xn=Σ∞i=∞ aiYi+n,n〉1}部分和的最大值的完全收敛性和矩完全收敛性.所得结果推广和改进了已知的相应的一些结果。
Let {Y_n,-∞n+∞} be a doubly infinite sequence of non-identically distributed extended negatively dependent(END) random variables,{a_n,-∞n+∞} an absolutely summable sequence of real numbers.Utilizing the Rademacher-Menshov's inequality of END random variables,the complete convergence and complete moment convergence of the maximal partial sums of moving average processes {X_n =Σ∞i=∞ a_iY_(i+n),n 1} are obtained,the corresponding results in series of previous papers are enriched and extended.