位置:成果数据库 > 期刊 > 期刊详情页
基于TIGGE多模式集合的24小时气温BMA概率预报
  • ISSN号:1006-9895
  • 期刊名称:大气科学
  • 时间:2013
  • 页码:43-53
  • 分类:P456[天文地球—大气科学及气象学]
  • 作者机构:[1]中国科学院大气物理研究所大气科学和地球流体力学数值模拟国家重点实验室,北京100029, [2]中国科学院大学,北京100049, [3]中国气象局公共气象服务中心,北京100081
  • 相关基金:公益性行业(气象)科研专项GYHY201006037,国家自然科学基金资助项目41075062、91125016,国家重点基础研究发展规划项目2010CB951001、2010CB428403
  • 相关项目:基于卫星重力场的数据同化及其在水循环研究中的应用
中文摘要:

利用TIGGE(THORPEX Interactive Grand Global Ensemble)单中心集合预报系统(ECMWF、United Kingdom Meteorological Office、China Meteorological Administration和NCEP)以及由此所构成的多中心模式超级集合预报系统24小时地面日均气温预报,结合淮河流域地面观测率定贝叶斯模型平均(Bayesian model averaging,BMA)参数,从而建立地面日均气温BMA概率预报模型.由此针对淮河流域进行地面日均气温BMA概率预报及其检验与评估,结果表明BMA模型比原始集合预报效果好;单中心的BMA概率预报都有较好的预报效果,其中ECMWF最好.多中心模式超级集合比单中心BMA概率预报效果更好,采用可替换原则比普通的多中心模式超级集合BMA模型计算量小,且在上述BMA集合预报系统中效果最好.它与原始集合预报相比其平均绝对误差减少近7%,其连续等级概率评分提高近10%.基于采用可替换原则的多中心模式超级集合BMA概率预报,针对研究区域提出了极端高温预警方案,这对防范高温天气有着重要意义.

英文摘要:

Bayesian model averaging (BMA) probability forecast models were established through calibration of their parameters using 24-h ensemble forecasts of average daily surface air temperature provided by single-center ensemble prediction systems (EPSs) from the following agencies: the European Centre for Medium-Range Weather Forecasts (ECMWF), the United Kingdom Meteorological Office (UKMO), the China Meteorological Administration (CMA), and the United States National Center for Environmental Prediction (NCEP) and its multi-center model grand-ensemble (GE) EPSs in the THORPEX Interactive Grand Global Ensemble (TIGGE), and observations in the Huaihe basin. The BMA probability forecasts of average daily surface air temperature for different EPSs were assessed by comparison with observations in the Huaihe basin. The results suggest that performance was better in the BMA predictive models than that in raw ensemble forecasts. The BMA predictive models for the four single-center EPSs all had good forecast skills; among them, the ECMWF EPS had the best. The BMA predictive models for the GE EPS performed better than any of the four single-center EPSs; those for the GE EPS with exchangeable members (EGE) quickened the computation rate and had the best forecast skill in BMA models for all EPSs. The mean absolute error (MAE) and continuous ranked probability score (CRPS) skills of the BMA models for EGE improved approximately 7% and 10%, respectively, compared with those of raw ensemble forecasts. On the basis of percentile forecasts from the BMA predictive models for EGE, an extreme scorching weather warning scheme was proposed in the study area, which is of significant importance for precautionary measures against such weather conditions.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《大气科学》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院大气物理研究所
  • 主编:陆日宇
  • 地址:北京德胜门外祁家豁子 北京9804信箱
  • 邮编:100029
  • 邮箱:dqkx@mail.iap.ac.cn
  • 电话:010-82995051 82995052
  • 国际标准刊号:ISSN:1006-9895
  • 国内统一刊号:ISSN:11-1768/O4
  • 邮发代号:2-823
  • 获奖情况:
  • 2000年中国科学院优秀期刊二等奖,中国科技论文统计分析数据库来源期刊,中国科学引文数据库收录,中国期刊方阵“双效”期刊
  • 国内外数据库收录:
  • 日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:22063