讨论了二阶微分方程组x″(t)+λa(t)f(x(t),y(t))=0,y″(t)+λb(t)g(x(t),y(t))=0,0≤t≤1,x(0)=y(0)=x′(1)=y′(1)=0,其中f,g连续,并赋予f,g一定的增长条件,证明了方程组至少存在2个正解。
There is much current attention focused on quentions of multiple positive solutions to boundary value problems for ordinary differential equations. We discuss a class of second-order systems x″(t)+λa(t)f(x(t),y(t))=0,y″(t)+λb(t)g(x(t),y(t))=0,0≤t≤1,x(0)=y(0)=x′(1)=y′(1)=0, where f, g are continuous. We will impose growth conditions of f, g which ensure the existence of at least two positive solutions.