以环板式针摆行星传动为研究对象,建立了考虑时变啮合刚度、齿侧间隙、误差等因素的齿轮传动系统的非线性动力学模型,推导了系统的运动微分方程.针对系统微分方程的半正定、变参数和非线性的特点,采用以齿轮副相对啮合位移为系统的广义坐标,将线性与非线性回复力共存的方程组转化为统一的矩阵形式,并对方程进行无量纲处理,为后续的微分方程的求解做准备.
Nonlinear dynamics model of a ring-plate-type cycloid drive is established, and differential motion e- quations of the system are developed, considering the positive semi-definite, varying parameters and nonlinear characteristics with relative displacement of meshing gears as system generalized coordinates. Linear and non- linear restoring force coexistence equations are transformed into a unified and standardized, matrix form, for next step of solving differential equations.