首先介绍了调和NA群的基本结构和球函数的性质.其次基于调和NA群上的Helgason-Fourier变换及相应于Laplace-Beltrami算子的热核,在NA群上建立了Hardy不确定原理.所得结论推广了Thangavelu(2002年)的部分结果.
The basic structure of harmonic NA groups and the properties of spherical function are firstly introduced.Then a version of the Hardy's uncertainty principle on harmonic NA groups is established in terms of the Helgason-Fourier transforms and the heat kernel associated to the Laplace-Beltrami operator on the harmonic groups,and hence some results of Thangavelu(2002) are extended.