通过改进欧氏的容许函数法,应用广义Baouendi-Grushin向量场的一些性质,选取特殊的容许函数,利用Hoelder不等式和Young不等式,证明了由广义Baouendi—Grushin向量场构成的p-退化次椭圆一阶发展不等方程,在适当条件下非平凡弱解的不存在性。
Some nonexistence results for p-degenerate sub-elliptic first order evolution inequalities associated with the generalized Baouendi-Grushin vector fields are given. The method is an improvement of the admissible function method in Euclidean space. The proof hardly depends on the properties of the generalized Baouendi-Grushin vector fields.