为了优化无线传感器网络节点部署性能,在粒子进化的多粒子群算法的基础上结合虚拟力方法,提出了一种虚拟力导向多粒子群算法的部署策略。该策略通过节点间的虚拟力影响多粒子群算法的速度更新过程,指导粒子进化,采用多个粒子群独立搜索解空间,有效地避免了"早熟"问题,从而最大限度地优化了网络的覆盖率。仿真结果表明,与虚拟力算法和多粒子群算法相比,该算法在覆盖率、迭代次数和部署时间等方面具有更好的性能。
In order to optimize the deployment performance of sensor nodes, the present research proposed a sensor deployment strategy, so-called virtual force based multiple particle swarm optimization (VFMPSO). VFMPSO combines the virtual force (VF) algorithm on the basis of the evolution of multiple particle swarm optimization (MPSO). The strategy uses the virtual force to direct the updating of MPSO for improving the convergence speed. By using the method of multiple group parallel searching,it avoids a phenomenon of premature and improves the network coverage rate to the largest extent. Simulation restilts show that VFMPSO has advantages over VF and MPSO in terms of coverage, iteration number and deployment time.