位置:成果数据库 > 期刊 > 期刊详情页
基于改进的形态学滤波和EEMD方法的滚动轴承故障诊断
  • ISSN号:1671-7147
  • 期刊名称:江南大学学报(自然科学版)
  • 时间:2015.10.28
  • 页码:532-537
  • 分类:TP393[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]江南大学电气自动化研究所,江苏无锡214122
  • 相关基金:国家自然科学基金项目(61174032);教育部博士点基金项目(200802950004).
  • 相关项目:一般化切换广义系统的优化控制方法与应用研究
中文摘要:

针对集成RFID与WSNs网络中智能节点最佳位置的选择问题,采用改进粒子群算法优化策略,在复杂的传播环境、交叉覆盖及智能节点间不可避免的干扰等影响因素下,寻找智能节点的最佳位置。该最佳位置不仅要保证给定智能节点对标签的最大覆盖率,而且要使得智能节点间的干扰最小。仿真结果表明,基于惯性权重线性递减策略的粒子群算法,加快了寻找最优节点部署的速度,并能快速有效地收敛于最优解,从而在保证覆盖率的前提下使干扰最小。

英文摘要:

The problem of choosing the optimum locations for Smart nodes in the integrated networks is considered. The factors affecting optimum selection are the complex propagation environments, the undesired mutual coverage and the unavoidable interference of smart nodes. All these choices must guarantee the maximum coverage for tags with the given smart nodes, and minimize the interferences between smart nodes. Based on the linear decrease inertia weight, this paper presents an improved Particle Swarm Optimization approach for tackling this complex optimization problem. To validate this approach, computational results are presented for a typical test scenario. The new approach can not only accelerate the speed of finding optimal nodes, but can also effectively and rapidly converge to the optimal solution. Furthermore, it can have a good coverage rate and can minimize the interference.

同期刊论文项目
同项目期刊论文