为研究纳秒脉冲等离子体气动激励在高亚卢速来流条件下抑制压气机叶栅流动的分离机制,建立了基于唯象学的模拟纳秒脉冲介质阻挡等离子体气动激励特性的热源模型,存微秒量级时间尺度上分析研究了纳秒脉冲等离子体气动激励对叶栅通道流动结构的影响机制,并初步探究了纳秒脉冲等离子体气动激励的流动控制规律。研究结果表明:基于唯象学的热源模型能够较好地模拟纳秒脉冲等离子体气动激励诱导产生冲击波的气动特性;纳秒脉冲等离子体气动激励诱导产生的冲击波在高亚声速来流条件下能够对叶栅通道流动结构产生较大影响,其影响规律与激励特征和流场特性有关;高亚声速米流条件下,在叶栅通道中施加纳秒脉冲等离子体气动激励能够降低通道出口总睬损失,改变流场结构。
In order to research the mechanism of nanosecond pulsed plasma aerodynamic actuation flow control on a high subsonic speed compressor cascade, a heat source model based on phenomenology is established to simulate the characteristics of nanosecond pulsed dielectric barrier discharge. The influence of nanosecond pulsed plasma aerodynamic actuation on a compressor cascade flow field is studied in detail from a microsecond time scale perspective, and a preliminary research on the nanosecond pulsed plasma aerodynamic actuation flow control is performed. The results are: the heat source model based on phenomenology is successful in modeling the aerodynamic performance of the shock wave produced by nanosecond pulsed plasma aerodynamic actuation; under the condition of high subsonic speed, the shock wave produced by the nanosecond pulsed plasma aerodynamic actuation still has a dramatic impact on the structure of the compressor cascade flow field, and the impact is influenced by the actuation feature and the characteristics of the flow field; although the inlet flow is high subsonic speed, the nanosecond pulsed plasma aerodynamic actuation is capable of decreasing the total pressure loss at the outlet plane of the compressor cascade passage, and changing the structure of the flow field.