采用SPSS Clementine11.0数据挖掘软件对当归不同炮制品研究所得数据进行分析,建立当归不同炮制品分类模型,并确定其分类参数,从而建立当归不同炮制品分类和质量评价方法。判别分析从59个指标中选择了8个指标为预测变量确立的当归不同炮制品的Fish’s判别函数,回代判别率为96.7%。本研究结果表明,采用数据挖掘软件能够准确、可靠的对当归不同炮制品进行识别和验证,为当归炮制品的分类和质量评价提供了一定的科学依据。
The paper reports the development of a quality evaluation method for Angelica different processed products. The data of high-performance liquid chromatography, water, total ash and extract were analyzed with SPSS Clementine11.0 software. Discriminant analysis (DA) established the classification model and parameter for Angelica different processed products. Fish’s discriminant functions of Angelica different processed products were generated using 8 predictor variables selected from 59 indexes. The correct rate of discriminating back substitution is 96.7%. Angelica different processed products can be accurately and reliably recognized and validated with DA of SPSS Clementine11.0 software.