将先进的多普勒超声成像技术运用于栉孔扇贝(Chlamys farreri)和虾夷扇贝(Patinopecten yessoensis)循环生理学的研究中,首次量化了扇贝心率(HR)、血流加速度(ABF)、收缩峰值速度(PS)、舒张末期速度(ED)、血液最大瞬时血流量(Max-IBF)、血液最小瞬时流量(Min-IBF)、收缩期与舒张期流速比(S/D)和阻力指数(RI)等指标,对比了两种不同耐温性扇贝的循环生理指标差异。结果表明,两种扇贝HR、ABF、PS、ED、Max-IBF、Min-IBF与水温均呈正相关;在10—25°C间,栉孔扇贝和虾夷扇贝HR范围分别为16—39、14—31次/min,ABF范围分别为1.75—15.84、0.99—7.41cm/s2,PS范围分别为3.54—8.09、2.32—8.85cm/s,ED范围分别为1.51—3.15、1.09—4.23cm/s,Max—IBF范围分别为0.051—0.193、0.137—0.316m L/s、Min—IBF范围分别为0.025—0.072、0.022—0.131m L/s、RI范围分别为0.49—0.69、0.42—0.54,S/D范围为2.28—2.83、1.75—2.12。同一温度下栉孔扇贝的HR、ABF、PS、ED指标水平均高于虾夷扇贝,Max-IBF、Min-IBF水平均低于虾夷扇贝;两种扇贝RI和S/D指标均在一定范围内波动。研究显示,虾夷扇贝在较低的心脏和血流搏动节律下保持了高效的血液流通,从而以相对较少的能量消耗维持了其机体代谢对血液循环的需求,这也与其冷水性的生态习性相适应。
We applied digital ultrasonic Doppler imaging to study circulatory physiology of two scallop species Chlamys farreri and Patinopecten yessoensis. First, we quantified several indices, including heart rate (HR), acceleration of blood flow (ABF), peak systolic velocity (PS), end-diastolic velocity (ED), maximum instantaneous blood flow (Max-IBF), minimum instantaneous blood flow (Min-IBF), resistive index (RI) and systolic and diastolic velocity ratio (S/D). Difference in these indices between the two species was compared, indicating that HR, ABF, PS, ED of both species showed a positive correlation with temperature. The thresholds of eight circulatory physiological indices between 10 and 25~C for C. farreri and P. yessoensis were as followed, respectively, HR 16--39, 14--31 beat/min; ABF 1.75--15.84, 0.99--7.41 cm/s2; PS 3.54--8.09, 2.32--8.85 cm/s; ED 1.51--3.15, 1.09---4.23 cm/s; Max-IBF 0.051--0.193, 0.137--0.316 mL/s; Min-IBF 0.025--0.072, 0.022--0.131 mL/s; RI 0.49--0.69, 0.42--0.54; and S/D 2.28--2.83, 1.75--2.12. At a same temperature, C. farreri showed greater values of HR, ABF, PS, and ED, but smaller Max-IBF, Min-IBF than P. yessoensis. The two species showed a fluctuation in RI and S/D within a certain range. Therefore, P. yessoensis has a more efficient circulatory function characterized by higher blood flow with relatively lower heart rate. In other words, P. yessoensis can meet the demand of blood circulation with less energy consumption of metabolism, which fits well with its adaptation to a cold-water environment.