The impact of eddies on the Kuroshio Current in the Luzon Strait (LS) area is investigated by using the sea surface height anomaly (SSHA) satellite observation data and the sea surface height (SSH) assimilation data. The influence of the eddies on the mean current depends upon the type of eddies and their relative position. The mean current is enhanced (weakened) as the cyclonic (anticyclonic) eddy becomes slightly far from it, whereas it is weakened (enhanced) as the cyclonic (anticyclonic) eddy moves near or within the position of the mean current; this is explained as the eddy-induced meridional velocity and geostrophic flow relationship. The anticyclonic (cyclonic) eddy can increase (decrease) the mean meridional flow due to superimposition of the eddy-induced meridional flow when the eddy is within the region of the mean current. However, when the eddy is slightly far from the mean current region, the anticyclonic (cyclonic) eddy tends to decrease (increase) the zonal gradient of the SSH, which thus results in weakening (strengthening) of the mean current in the LS region.
The impact of eddies on the Kuroshio Current in the Luzon Strait (LS) area is investigated by using the sea surface height anomaly (SSHA) satellite observation data and the sea surface height (SSH) assimilation data. The influence of the eddies on the mean current depends upon the type of eddies and their relative position. The mean current is enhanced (weakened) as the cyclonic (anticyclonic) eddy becomes slightly far from it, whereas it is weakened (enhanced) as the cyclonic (anticyclonic) eddy moves near or within the position of the mean current; this is explained as the eddy-induced meridional velocity and geostrophic flow relationship. The anticyclonic (cyclonic) eddy can increase (decrease) the mean meridional flow due to superimposition of the eddy-induced meridional flow when the eddy is within the region of the mean current. However, when the eddy is slightly far from the mean current region, the anticyclonic (cyclonic) eddy tends to decrease (increase) the zonal gradient of the SSH, which thus results in weakening (strengthening) of the mean current in the LS region.