利用复合区间作图法和混合线性模型复合区间作图法,对野生大豆江浦野生豆-5和栽培大豆南农06-17所得的F2∶3家系(2008、2009年)及F2∶4家系(2009年)的单株有效荚数、单株粒重、百粒重3个荚粒相关性状进行QTL分析。结果表明:复合区间作图法检测到27个QTL,混合线性模型复合区间作图法检测到18个加性显性QTL和13对上位性QTL,2种方法共同检测到17个QTL,其中12个QTL(qEPP-H-1、qEPP-Lb-1、qSWP-La-1、qSWP-Lb-1、qSW-B1-1、qSW-B2-1、qSW-D1b-1、qSW-H-1、qSW-H-2、qSW-I-2、qSW-Lb-1和qSW-Ma-1)在2 a或2个世代稳定表达,qEPP-H-1、qEPP-Lb-1和qSWP-Lb-1的增效等位基因来源于野生大豆。研究结果为野生大豆优异等位基因的发掘、栽培大豆遗传基础的拓宽以及大豆产量分子标记辅助育种提供理论依据。
The objective of our study was to map quantitative trait loci(QTL)of yield related traits from G.soja that could improve the soybean.F2∶3 and F2∶4 populations(316 lines)were derived from a cross between Glycine soja 'Jiangpuyeshengdou-5' and Glycine max 'Nannong 06-17'.Three seed and pod traits including effective pods per plant(EPP),seed weight per plant(SWP)and 100-seed weight(SW)of 2008 F2∶3,2009 F2∶3 and 2009 F2∶4 were mapped by composite interval mapping(CIM)and mixed-model-based composite interval mapping(MCIM).Twenty-seven QTLs were detected by CIM.Eighteen additive-dominant QTLs and thirteen pairs of epistatic QTLs were detected by MCIM.Seventeen QTLs were detected by CIM and MCIM.Twelve QTLs(qEPP-H-1、qEPP-Lb-1、qSWP-La-1、qSWP-Lb-1、qSW-B1-1、qSW-B2-1、qSW-D1b-1、qSW-H-1、qSW-H-2、qSW-I-2、qSW-Lb-1andqSW-Ma-1)were stably detected in two years or in two generations.There were three QTLs:qEPP-H-1,qEPP-Lb-1 and qSWP-Lb-1,with positive effects from wild soybean.These results can provide a theoretical basis for excavating excellent genes,broadening cultivated soybean genetic basis and molecular marker assisted breeding of yield.