位置:成果数据库 > 期刊 > 期刊详情页
自治飞艇直接自适应模糊路径跟踪控制
  • ISSN号:1001-0920
  • 期刊名称:《控制与决策》
  • 时间:0
  • 分类:TP273[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]北京航空航天大学第七研究室,北京100191, [2]北京航空航天大学自动化科学与电气工程学院,北京100191
  • 相关基金:国家自然科学基金(61473010,61203022); 中央高校基本科研业务费专项资金(YWF-14-SXXY-010)
中文摘要:

针对拓扑结构为无向连通的多机械臂系统,提出了一种自适应与迭代学习相结合的分布式控制协议来实现整个系统对给定期望参考轨迹的一致性跟踪.通过引入一个适当的自适应迭代学习参数,所提自适应迭代学习控制协议能够克服机械臂系统中的干扰和模型不确定性,并且每个机械臂的自适应迭代学习控制(AILC)律仅需要利用其与邻居机械臂的相对交互信息.进一步,在只有一部分机械臂具有期望参考轨迹信息的前提下,该控制协议可以实现整个系统对期望参考轨迹的跟踪,同时能够保证轨迹跟踪误差与控制输入的有界性.此外,利用李亚普诺夫分析方法证实了所得结论的正确性,并且通过一个实例验证了所提自适应迭代学习控制协议的有效性.

英文摘要:

A hybrid adaptive and iterative learning method was proposed to obtain distributed control protocols for multiple manipulator systems with undirected interaction topology to achieve consensus tracking of the specified desired reference trajectory. By introducing an appropriate adaptive iterative learning parameter,the proposed adaptive iterative learning control( AILC) protocol can overcome the effects of disturbances and model uncertainties of manipulators,where the AILC law of each manipulator needs only the relative information between it and its nearest neighbors. Moreover,it is shown that all manipulators can be rendered to achieve the perfect tracking of the desired reference trajectory though its information can be accessed by only a portion of manipulators,where the boundedness of both the tracking error and the control input can be simultaneously guaranteed. In addition,the Lyapunov analysis method is employed to validate the obtained results,and the effectiveness of the proposed AILC protocol is illustrated through an example.

同期刊论文项目
期刊论文 10 会议论文 16 专利 2
同项目期刊论文
期刊信息
  • 《控制与决策》
  • 北大核心期刊(2011版)
  • 主管单位:中华人民共和国教育部
  • 主办单位:东北大学
  • 主编:张嗣瀛 王福利
  • 地址:沈阳市东北大学125信箱
  • 邮编:110004
  • 邮箱:kzyjc@mail.neu.edu.cn
  • 电话:024-83687766
  • 国际标准刊号:ISSN:1001-0920
  • 国内统一刊号:ISSN:21-1124/TP
  • 邮发代号:8-51
  • 获奖情况:
  • 1997年被评为辽宁省优秀编辑部,1999年期刊影响因子在信息与系统类期刊中排名第二位
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:32961