位置:成果数据库 > 期刊 > 期刊详情页
一种基于局部模型的多工况过程质量预测方法
  • ISSN号:1001-3695
  • 期刊名称:《计算机应用研究》
  • 时间:0
  • 分类:U491.14[交通运输工程—交通运输规划与管理;交通运输工程—道路与铁道工程]
  • 作者机构:[1] 西南交通大学 机械工程学院,成都610031, [2] 纽约州立大学布法罗分校 土木工程学院,美国 布法罗 14260
  • 相关基金:国家自然科学基金(No.51175442,No.51205328);国家留学基金委建设高水平大学研究生项目专项资金资助(留金发[2012]3013)。
中文摘要:

区域物流需求是制定区域物流发展政策、基础设施建设和物流系统规划的重要依据,由区域各项相关经济指标共同决定。针对区域物流需求预测中样本数量小的问题,提出了互信息高维度特征降维方法,在保证相关综合信息完整性基础上降低原始数据维度,在此基础上建立了状态空间时间序列预测模型,同时采用局部线性小波神经网络和LIBSVM支持向量回归模型进行对比实验。算例分析及实验结果表明,采用互信息降维后的预测模型相对误差平均减少54.8%,互信息与状态空间时间序列模型相结合的预测方法对于区域物流需求预测问题预测精度较高,相对误差约为0.08。

英文摘要:

Regional logistics demand is an important evidence of the regional development policy formulating, infra-structure construction and logistics system programming. It is decided jointly by all the related regional economic indica-tors. On account of the small sample size when forecasting the regional logistics demand, the feature dimension reduction method of Mutual Information(MI)is proposed to reduce the original data dimensions without destroying the integrity of the relevant synthesis information. And on this basis, the state space time series forecasting model is established, together with the local linear wavelet neural network and LIBSVM support vector regression models as comparisons. The results of example analysis and experiment show that, a 54.8% mean decrease of the relative errors in the forecasting models can be obtained by using the Mutual Information to reduce the data dimensions, and the approach of combining the MI and state space time series model has a higher forecasting accuracy in regional logistics demand forecasting problem. The relative error is about 0.08.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用研究》
  • 北大核心期刊(2011版)
  • 主管单位:四川省科学技术厅
  • 主办单位:四川省计算机研究院
  • 主编:刘营
  • 地址:成都市成科西路3号
  • 邮编:610041
  • 邮箱:arocmag@163.com
  • 电话:028-85210177 85249567
  • 国际标准刊号:ISSN:1001-3695
  • 国内统一刊号:ISSN:51-1196/TP
  • 邮发代号:62-68
  • 获奖情况:
  • 第二届国家期刊奖百种重点科技期刊,国内计算技术类重点核心期刊,国内外著名数据库收录期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:60049