位置:成果数据库 > 期刊 > 期刊详情页
机器人视觉Kalman和FIR滤波稳像算法设计与比较
  • ISSN号:2095-302X
  • 期刊名称:《图学学报》
  • 时间:0
  • 分类:TP242[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]中国计量学院机电工程学院,浙江杭州310018, [2]浙江大学控制科学与工程系,浙江杭州310007
  • 相关基金:国家自然科学基金资助项目(50905170);科技部质检公益科研资助项H(201210076-2)
中文摘要:

稳像是提高基于视觉的移动机器人作业精度的关键。论文建立了完整的稳像算法流程,包含图像运动学模型、KLT特征提取、SAD特征匹配和滤波算法;设计了运动参数的Kalman和FIR滤波算法;并利用MATLAB实现了运动参数的Kalman和FIR滤波器;仿真验证和对比分析了Kalman和FIR滤波器对运动参数的去抖效果。结果表明,机器人视觉稳像中,Kalman滤波效果优于FIR滤波。用VC++和OpenCV编程实现了基于Kalman滤波的机器人视觉稳像软件,在双机器人移动平台上开展了实验,稳像计算时间小于视频采样时间,系统满足机器人对接作业实时性和精度要求。

英文摘要:

Image stabilization is the key for accurate docking operations of robots with vision. The whole algorithm of image stabilization is established, including images kinematics model, KLT feature pixels detecting, SAD feature pixels matching and filters. Kalman and FIR filters are designed for smoothing images motion parameters and built in MATLAB. Simulation of filter of motion un-intended parameters is implemented to indicate removing jitter effect. Kalman filter is compared with FIR filter. Comparison curves and tables are given, which demonstrate that Kalman filter is better than FIR in robot vision image stabilization process. Based on VC++ and OpenCV, image stabilization software is programmed, and experiments are completed on double moving robots docking operation platform. The algorithm running time is less than the sampling period, and the precision and real-time demands are contented.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《图学学报》
  • 中国科技核心期刊
  • 主管单位:中国科学技术协会
  • 主办单位:中国图学学会
  • 主编:李华
  • 地址:北京海淀区学院路37号
  • 邮编:100083
  • 邮箱:txxb_2011@163.com
  • 电话:010-82317091 82326420
  • 国际标准刊号:ISSN:2095-302X
  • 国内统一刊号:ISSN:10-1034/T
  • 邮发代号:
  • 获奖情况:
  • 全国中文核心期刊,全国科技论文统计用刊
  • 国内外数据库收录:
  • 中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:1124