证明了当N的万有覆盖上存在一个多项式增长的非负严格凸函数时,不存在从R~3到N的非平凡拟调和球.于是在dim M=3时推广了Eells-Sampson的定理.
It is proved that if the universal covering of N admits a nonnegative strictly convex function with polynomial growth,then there are no nontrivial quasi-harmonic spheres from R~3 to N.The authors also generalize the famous Eells-Sampson's theorem when dim M=3.