证明了在加权Lorentz空间上联系偏导数和偏连续模的Gagliardo-Nirenberg型乘积型不等式.我们的主要结果是下面的不等式和,其中0〈θ〈1,1/p=1-θ/p_0+θ/p_1,1/s=1-θ/s_0+θ/s_1,且指标p_i,s_i和权w满足一些特殊条件.同时给出了C和K具体估计.
We prove multiplicative inequalities of Gagliardo-Nirenberg type that connect partial moduli of continuity and partial derivatives of functions with respect to a fixed variable in different weighted Lorentz norms.Our main results are the estimates and where 0θ1,1/p=1-θ/p_0+θ/p_1,1/s=1-θ/s_0+θ/s_1,with exponents p_i,s_i and weight w satisfying some special conditions.Furthermore,we give concrete estimates of Cand K.