设{Xn.n≥1}是一非退化的i.i.d.随机变量序列,Un是以二维Borel可测对称函数h(x,y)为核函数的U-统计量.记Un=2/(n(n-1))Σ≤i≤j≤nh(Xi,Xj).本文分别在核函数h(x,y)只有4/3阶矩或4/3+δ,0<δ≤1的情况下,对非常广泛的一类权函数φ(x)与边界函数b(x)得到了如下关于U-统计量Un的精致渐近性:limε→αR(ε)∑n≥noφ(n)P(|Un|≥εn-1/2b(n))=1不仅使得已有的结果成为我们的特况,还大大降低了其中的矩条件.
Let {X,Xn,n≥1} be non-degenerate i.i.d.random variables,define a U-statistics U_n=2/(n(n-1))∑≤j≤j≤nh(Xi,Xj),where h(x,y) is a 2-dimensional Borel measurable and symmetric kernel function.Under the condition of E|h(X1,X2)|^4/3 or E|h(X1,X2)|^4/3+δ),0〈δ≤1 separately,for a very extensive weighted functionφ(x) and a boundary function b(x),we discuss the precise asymptotics of Un as follows: limε→αR(ε)∑n≥noφ(n)P(|Un|≥εn-1/2b(n))=1where a is an appropriate non-negative number.It not only makes the known results on this subject as the special case of our results,but also reduces their moment conditions.