在无线传感器网络定位的距离估计方法研究中,普遍假设到达信号强度(received signal strength indicator,RSSI)与对应通信距离的对数成线性关系,但是该假设在实际无线通信环境下几乎不能满足。针对此问题本文提出一种基于区间数聚类的RSSI-距离(RSSI-D)估计方法(distance estimation method using interval data clustering,DEMIDC),首先利用区间数表示方法结合实际定位环境中RSSI数据的统计信息表示RSSI的分布区域,然后针对不同环境中RSSI不确定性程度不同,分别采用基于区间数软聚类和硬聚类的方法对RSSI-D进行估计。最后采用3种典型通信环境下真实的RSSI测量数据完成的实验结果表明,该方法具有较高的距离估计精度,同时具备一定的实用价值。
In the study of communication distance estimation in wireless sensor network localization,RSSI(received signal strength indicator) is assumed linear with the logarithm of corresponding communication distance.However,this assumption is always in contradiction with the situation in real communication environment.Thus in this paper,a new communication distance estimation method based on RSSI using interval data clustering(DEMIDC) is proposed.First,interval data combined with the statistic information of RSSI data are used to represent the distribution region.Then,soft and hard interval data cluster algorithms are used respectively to estimate the communication distances for different uncertainty levels of RSSI data.Finally,RSSIs in three different communication environments are used to evaluate this method.Experiment results show that the new method can obtain better evaluation precision in different environments,and can be used in wireless sensor network localization system.