位置:成果数据库 > 期刊 > 期刊详情页
基于再生核RBF神经网络的瓦斯突出预测系统
  • ISSN号:1671-4598
  • 期刊名称:《计算机测量与控制》
  • 时间:0
  • 分类:TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]中国矿业大学机电学院,北京100000, [2]辽宁工程技术大学电气与控制工程学院,辽宁葫芦岛125105
  • 相关基金:国家自然科学基金项目(50874059).
中文摘要:

该设计的瓦斯突出预测系统由数据采集,数据传输和数据处理三部分组成;首先使用层次分析法和MATLAB选择出了瓦斯突出影响因素,然后使用TMS320C6713和PCI总线技术设计了数据采集和传输系统,同时采用再生核算法来进行RBF神经网络的训练,通过wi[a,b]空间插值逼近的方法,把RBF神经网络的训练转换为解线性方程组,最后使用LABVIEW,MATLAB和CCS混合编程实现了再生核RBF神经网络的训练和仿真以及TMS320C6713软件开发,准确地预测出了瓦斯突出。

英文摘要:

Gas outburst prediction system consists of three parts, which is data collection, data transmission and data processing, de- signed in the paper. First, the factors of affecting gas outburst was Selected using the AHP and MATLAB, Then, data collection and trans- mission system is designed with TMS320C6713 and the PCI bus technology, At the same time, RBF neural network is trained, using Repro- ducing Kernel algorithm, By the space W~ Ea, b] interpolation approximation, training of the RBF neural network is converted into seeking the solution of the linear equations system, Finally, Reproducing Kernel RBF Neural Network training and simulation and TMS320C6713 Software Development is achieved, using the Mixed programming of LABVIEW, MATLAB and CCS, outburst was accurately predicted.

同期刊论文项目
期刊论文 74 会议论文 9 专利 2 著作 1
同项目期刊论文
期刊信息
  • 《计算机测量与控制》
  • 北大核心期刊(2011版)
  • 主管单位:中国航天科工集团公司
  • 主办单位:中国计算机自动测量与控制技术协会
  • 主编:苟永明
  • 地址:北京海淀区阜成路甲8号中国航天大厦405
  • 邮编:100048
  • 邮箱:ly@chinamca.com
  • 电话:010-68371578 68371556
  • 国际标准刊号:ISSN:1671-4598
  • 国内统一刊号:ISSN:11-4762/TP
  • 邮发代号:82-16
  • 获奖情况:
  • 中国学术期刊综合评价数据库来源期刊,中国科技论文统计源期刊,“国家期刊奖百种重点期刊”
  • 国内外数据库收录:
  • 美国剑桥科学文摘,英国科学文摘数据库,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版)
  • 被引量:27924