欢迎您!
东篱公司
退出
申报数据库
申报指南
立项数据库
成果数据库
期刊论文
会议论文
著 作
专 利
项目获奖数据库
位置:
成果数据库
>
期刊
> 期刊详情页
ON SS-SUPPLEMENTED SUBGROUPS OF FINITE GROUPS AND THEIR PROPERTIES
ISSN号:0017-0895
期刊名称:Glasgow Mathematical Journal
时间:2012.9.9
页码:481-491
相关项目:有限群的幂自同构与主因子的嵌入
作者:
Guo, Xiuyun|Lu, Jiakuan|
同期刊论文项目
有限群的幂自同构与主因子的嵌入
期刊论文 39
同项目期刊论文
有限幂零群通过单群扩张的整群环的正规化子性质
The normalizer property for integral group rings of finite solvable T-groups
On the Norm and Wielandt Series in Finite Groups
On the Wielandt Subgroup in a p-Group of Maximal Class
Finite p-groups with exactly one A1-subgroup of given structure of rder p3
On J-groups of prime power order
On groups with a CC(n)- subgroups
The Influence of CAP*-Subgroups on the Solvability of Finite Groups
On local semi CAP-subgroups of finite groups
On non-Frattini chief factors and solvability of finite groups
非极大交换子群皆正规的有限群
非交换子群共轭类个数为2的有限群
关于有限群的Γ_K类和半惯性子群的一些注记(英文)
具有阿贝尔Sylow 2-子群的有限群的整群环的正规化子性质
Finite p-groups whose non-normal cyclic subgroups have small index in their normalizers
ON HC-SUBGROUPS AND THE STRUCTURE OF FINITE GROUPS
FINITE GROUPS ALL OF WHOSE SECOND MAXIMAL SUBGROUPS ARE QTI-SUBGROUPS
ON FINITE X-DECOMPOSABLE GROUPS FOR X = {1,2,4}
On minimal non-MSN-groups
On Coleman automorphisms of wreath products of finite nilpotent groups by abelian groups
有限群幂零剩余阶的一个注记(英文)
On the intersection of the normalizers of the nilpotent residuals of all subgroups of a finite group
Finite groups with a pre-fixed-point-free power automorphism
特定阶的子群都同构且交换的有限p-群
A characterization of M-groups
On class-preserving Coleman automorphisms of finite separable groups
Coleman automorphisms of standard wreath products of finite abelian groups by 2-closed groups
有限幂零群通过对称群扩张的整群环的正规化子性质
On centralizer subalgebras of group algebras
关于有限p- 群的正规闭包的一些条件
阿贝尔群与极大类p-群的半直积的coleman自同构
Class-preserving Coleman automorphisms of finite groups whose second maximal subgroups are TI-subgro
Sylowp-子群的结构对有限群的Coleman外自同构群的影响
关于π-块覆盖的一些性质
极小非MSSP-群的分类
关于有限群的ГK类和半惯性子群的一些注记
Coleman Automorphisms of Finite Groups with a Unique Nontrivial Normal Subgroup