位置:成果数据库 > 期刊 > 期刊详情页
基于核最小噪声分离变换的高光谱遥感影像多类 SVM 分类
  • ISSN号:1000-386X
  • 期刊名称:《计算机应用与软件》
  • 时间:0
  • 分类:TP751[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]重庆交通大学土木建筑学院,重庆400074, [2]成都理工大学地学空间信息技术国土资源部重点实验室,四川成都610059, [3]重庆市地理信息中心,重庆401121
  • 相关基金:国家自然科学基金项目(41071265);高等学校博士学科点专项科研基金项目(20105122110006);重庆市自然科学基金项目(cstc2012jjA40055);国土资源部地学空间信息技术重点实验室开放基金项目(KLGSIT2013-03).
中文摘要:

高光谱遥感影像具有高维非线性、数据冗余多、训练样本难以获得等特点。在线性最小噪声分离变换MNF(Minimum Noise Fraction)的基础上,引入核方法,提出核最小噪声分离变换KMNF(Kernel Minimum NoiseFraction)高光谱遥感影像非线性特征提取方法。在KMNF特征提取后的影像上利用多类SVM进行高光谱影像分类,分析数据维数、样本个数对分类结果的影响,并与传统的最小距离分类方法进行对比。发现最小距离分类法存在维数灾难现象,当达到一定的特征维数之后,多类SVM分类方法受维数影响较小,具有一定的抗噪声能力,在一定程度上避免了维数灾难现象;利用多类SVM进行分类时,随着样本数目的减少,合理设置有关参数,高光谱图像的分类能够维持在较高精度;而传统的最小距离分类法当样本数量较小时,效果很差,这说明了SVM小样本分类的优势。

英文摘要:

Remote sensing images with hyper-spectrum have the characteristics of high dimensional nonlinearity, rich data redundancy, and difficult to obtain the training samples, etc. Based on linear minimum noise fraction (MNF) transformation, we introduce kernel method and put forward the nonlinear feature extraetion method with kernel minimum noise fraction (KMNF) for hyperspectral remote sensing image. Multi-class SVM is applied to the images with KMNF feature extraction performed for hyperspectral images classification, the impacts of data dimensionality and sample numbers on classification result are analysed and compared with the traditional minimum distance classification method. It is found that the dimension disaster phenomenon exists in minimum distance classification. After the feature dimension reaches a certain number, the multi-class SVM classification is less affected by the dimension and has the ability of noise-resistant, so it avoids the di- mension disaster phenomenon to certain extent. When using multi-class SVM in classification, with the reduction of sample number and by setting the parameters reasonably, the hyperspectral images can keep higher classification precision ; however for traditional minimum distance classification, when the sample number is small, the result would be very poor, this shows that SVM has the advantages in small-sample classification.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机应用与软件》
  • 北大核心期刊(2011版)
  • 主管单位:上海科学院
  • 主办单位:上海市计算技术研究所 上海计算机软件技术开发中心
  • 主编:朱三元
  • 地址:上海市愚园路546号
  • 邮编:200040
  • 邮箱:cas@sict.stc.sh.cn
  • 电话:021-62254715 62520070-505
  • 国际标准刊号:ISSN:1000-386X
  • 国内统一刊号:ISSN:31-1260/TP
  • 邮发代号:4-379
  • 获奖情况:
  • 全国计算机类中文核心期刊
  • 国内外数据库收录:
  • 波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2011版),中国北大核心期刊(2000版)
  • 被引量:27463