位置:成果数据库 > 期刊 > 期刊详情页
基于免疫克隆高斯过程隐变量模型的SAR目标特征提取与识别
  • ISSN号:1001-9014
  • 期刊名称:《红外与毫米波学报》
  • 时间:0
  • 分类:TP75[自动化与计算机技术—控制科学与工程;自动化与计算机技术—检测技术与自动化装置]
  • 作者机构:[1]西安理工大学计算机科学与工程学院,陕西西安710048, [2]西安电子科技大学智能感知与图像理解教育部重点实验室、国际智能感知与计算联合研究中心,陕西西安710071
  • 相关基金:国家重点基础研究发展计划资助项目(2013CB329402); 国家自然科学基金资助项目(61271302;61272282); 高等学校学科创新引智计划资助项目(B07048)
中文摘要:

针对传统字典学习算法难以有效保持极化SAR图像的空间结构以及难以处理大规模数据的问题,提出了一种基于空域和极化域的联合域字典学习和稀疏表示的分类方法.该方法采用基于联合域流形距离的快速AP聚类进行字典学习.利用局部线性编码对极化SAR图像进行空域和极化域的联合域稀疏表示,充分利用了极化SAR数据集潜在的信息,有效保持极化SAR数据结构的同时降低了算法的时间复杂度.试验结果表明:所提算法适应性强,收敛速度快,能够提高极化SAR图像的分类精度.

英文摘要:

T raditional dictionary learning (DL ) algorithms only consider the global sparsity of data , yet ignore the spatial structure of data .Moreover ,its high computational complexity leads to the dif‐ficulty of dealing with large‐scale image data .Considering the information of PolSAR image in the spatial‐polarimetric domain , a novel combined DL based sparse representation (SR ) classification method (CDL‐SRC) was proposed for PolSAR image classification in this paper .First ,the spatial‐po‐larimetric manifold based fast affinity propagation (AP) clustering was employed to learn an over‐complete dictionary .Then locality‐constrained linear coding method was adopted to extract the spatial and polarimetric features of PolSAR respectively .Finally ,the PolSAR image was classified by the lin‐ear support vector machine (SVM ) .Compared with traditional methods ,experimental results demon‐strate that the proposed method can improve the classification accuracy ,w hich has the advantages of strong adaptability ,efficient convergence rate and low computational complexity .

同期刊论文项目
同项目期刊论文
期刊信息
  • 《红外与毫米波学报》
  • 中国科技核心期刊
  • 主管单位:中国科学院
  • 主办单位:中国科学院上海技术物理研究所 中国光学学会
  • 主编:褚君浩
  • 地址:上海市玉田路500号
  • 邮编:200083
  • 邮箱:jimw@mail.sitp.ac.cn
  • 电话:021-25051553
  • 国际标准刊号:ISSN:1001-9014
  • 国内统一刊号:ISSN:31-1577/TN
  • 邮发代号:4-335
  • 获奖情况:
  • 1992、1996年获全国优秀学术期刊一等奖,1999年首届国家期刊奖
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),瑞典开放获取期刊指南,中国北大核心期刊(2000版)
  • 被引量:8778