To improve the processing efficiency and the quality of orbital milling hole of aerospace Al-alloy, the big-pitch influence on cutting force and hole quality was studied experimentally. First, a program based on horizontal lathe was proposed based on kinematics analysis of orbital milling. Then, the cutting force at different stages and the hole quality with different pitches were measured. Results show that the axial force and radial force increase with the pitch amplification during orbital milling. However, the axial force in the orbital milling hole is about 8—10 times smaller than that in the conventional drilling. The diameter error of milling hole is 48—93 μm, and the surface roughness of milling hole is 1.2—1.7 μm. Finally, an orbital milling device with big pitch was designed.
To improve the processing efficiency and the quality of orbital milling hole of aerospace Al-alloy, the big- pitch influence on cutting force and hole quality was studied experimentally. First, a program based on horizontal lathe was proposed based on kinematics analysis of orbital milling. Then, the cutting force at different stages and the hole quality with different pitches were measured. Results show that the axial force and radial force increase with the pitch amplification during orbital milling. However, the axial force in the orbital milling hole is about 8--10 times smaller than that in the conventional drilling. The diameter error of milling hole is 48--93 μm, and the surface roughness of milling hole is 1.2--1.7 μm. Finally, an orbital milling device with big pitch was designed.