研究了一类p—Laplace发展方程ut=div(|▽u|^p-2▽u)+au∫Ωu^q(x,t)dx在一个有界域Ω R^N(N〉2)解的存在性,其中Δp=div(|▽u|^p-2▽u),P〉1,r,q〉0.证明了当r,q≥1时,方程的解唯一存在;而在r〈1或者q〈1时局部解存在,但唯一性未必成立.
This paper studies the existence and uniqueness of solutions for a class of p-Laplace evolution equation ut=div(|▽u|^p-2▽u)+au∫Ωu^q(x,t)dxin a bounded domain Ω R^N(N〉2) where Δp=div(|▽u|^p-2▽u),with P〉1,and r,q〉0.It is shown that the local solution exists and if r, q ≥ 1, the solution is unique and if r, q〈 1, the uniqueness doesn't always hold.