设ωi(x,r)(i=1,2)是R^n×R^+上的可测正函数,定义双(次)线性算子M2和T,证明了当(ω1,ω2)∈S0,n时,算子M2与T以及它们与BMO函数所生成的交换子在广义Morrey空间L^p1,ω1(R^n)×L^p2,ω2(R^n)到L^p,ω(R^n)上都是有界的.对于双线性算子T与Lipschitz函数组成的交换子,也得到了类似的有界性结论.这些结论推广了叶晓峰在广义Morrey空间上对几类交换子的估计.
Let ωi(x,r) (i=1, 2) be positive measurable functions on R^n×R^+, define bi-sublinear maximal operator M2 and bilinear singular integral operator T. If (ω1,ω2 ) ∈ S0, n, then the operator M2 , T and their commutators with BMO functions are bounded from L^p1,ω1×L^p2,ω2(R^n ) to L^p,ω(R^n). Similarly, the commutators generated by the bilinear singular integral operator T with Lipschitz functions are also bounded on generalized Morrey spaces. All the results generalize the corresponding results of YE-Xiaofeng on generalized Morrey space.