位置:成果数据库 > 期刊 > 期刊详情页
机车受电弓滑板磨耗的图像处理算法研究
  • ISSN号:1002-8331
  • 期刊名称:计算机工程与应用
  • 时间:2015.10
  • 页码:164-167
  • 分类:S661.2[农业科学—果树学;农业科学—园艺学]
  • 作者机构:台州学院机械工程学院
  • 相关基金:国家自然科学基金项目(61134011)资助
  • 相关项目:基于牵引电机监控数据的电力机车粘着控制新方法研究
作者: 邱存勇|肖建|
中文摘要:

由于高光谱数据量大、维数高,光谱噪声明显、散射严重等特征导致光谱建模时关键变量提取较为困难,同时,高光谱图像的获取会受非单色光、杂散光、温度等多种因素的影响,从而使高光谱数据与待测性质之间有一定非线性关系。为此,提出采用正自适应加权算法(CARS)对可见-近红外高光谱高维数据进行关键变量筛选,并与全光谱和经典变量提取方法SPA,MC-UVE,GA和GA-SPA方法进行比较。以200个库尔勒香梨为研究对象,采用SPXY方法将样本划分为校正集和预测集,校正集和预测集分别包含150个和50个样本。基于不同方法筛选的变量,分别建立线性PLS模型及非线性LS-SVM模型,r2,RMSEP和RPD用于模型性能的评估。综合比较发现,GA,GA-SPA和CARS变量筛选方法能够有效地筛选出原始高光谱数据中具有强信息且对外界影响因素不敏感的变量,适用于高光谱数据关键变量的提取,其中CARS变量筛选效果最佳,基于CARS获取的关键变量构建的非线性LS-SVM库尔勒香梨SSC含量预测模型获得了最优的预测结果,r2pre,RMSEP和RPD分别为0.851 2,0.291 3和2.592 4。研究表明,CARS方法是一种有效的高光谱关键变量筛选方法,利用高光谱数据,非线性LS-SVM模型比线性PLS模型更适合于香梨品质的定量预测。

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887