位置:成果数据库 > 期刊 > 期刊详情页
基于结构相似的RANSAC改进算法
  • ISSN号:1002-8331
  • 期刊名称:《计算机工程与应用》
  • 时间:0
  • 分类:TP391.4[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:湖南工业大学计算机与通信学院,湖南株洲412007
  • 相关基金:国家自然科学基金(No.61170102);湖南省教育厅科学研究项目(No.12A039);湖南省自然科学基金(No.11JJ3070).
中文摘要:

为了减少传统RANSAC(Random Sample Consensus,随机抽样一致性)算法的迭代次数和运行时间,提高算法的速度和精度,提出了一种基于结构相似的RANSAC改进算法.采用BRISK(Binary Robust Invariant ScalableKeypoints)算法提取和描述二进制特征点,用Hamming 距离进行特征匹配,获得初始匹配点集,利用结构相似约束剔除误匹配点,得到新的匹配点集,用新的点集作为RANSAC 的输入,求出变换矩阵.该算法在初始匹配后进行了匹配点提纯,能快速求得变换模型.实验证明该算法迭代次数和运行时间比传统RANSAC算法明显减少,因此改进的算法在速度和精度上优于传统的RANSAC算法.

英文摘要:

This paper proposes an improved RANSAC algorithm based on structural similarity to improve the speed and accuracy of traditional RANSAC(Random Sample Consensus)algorithm. Firstly, BRISK(Binary Robust Invariant Scalable Keypoints)algorithm is used to detect and describe feature points. The initial match set is obtained by hamming distance feature matching. Then, false match is eliminated by structural similarity constraint. Finally, the new match set is taken as the input of RANSAC to calculate the transformation matrix. The algorithm can obtain the transformation model quickly because it has purified matched points after the initial matching. Experiments show that the number of iterations and run time are obviously less than the traditional algorithm. Therefore, the proposed algorithm outperforms the traditional RANSAC algorithm in terms of both speed and accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《计算机工程与应用》
  • 北大核心期刊(2014版)
  • 主管单位:中国电子科技集团公司
  • 主办单位:华北计算技术研究所
  • 主编:怀进鹏
  • 地址:北京市海淀区北四环中路211号北京619信箱26分箱
  • 邮编:100083
  • 邮箱:ceaj@vip.163.com
  • 电话:
  • 国际标准刊号:ISSN:1002-8331
  • 国内统一刊号:ISSN:11-2127/TP
  • 邮发代号:82-605
  • 获奖情况:
  • 1. 2012年首批获得中国学术文献评价中心发布的 “...,2. 2001年获得新闻出版署“中国期刊方阵双效期刊”,3. 2008年首批入选国家科技部“中国精品科技期刊...,4.2003年-2011年连续获得工业和信息化部期刊最高...
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,波兰哥白尼索引,美国剑桥科学文摘,英国科学文摘数据库,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2014版),中国北大核心期刊(2000版)
  • 被引量:97887