位置:成果数据库 > 期刊 > 期刊详情页
Left-definite boundary conditions of Sturm-Liouville problems when the interval shrinks to a point
  • ISSN号:1005-1031
  • 期刊名称:Applied Mathematics-A Journal of Chinese Universit
  • 时间:2011.3
  • 页码:29-37
  • 分类:O212.2[理学—概率论与数理统计;理学—数学] N05[自然科学总论—科学技术哲学]
  • 作者机构:[1] Science College, Inner Mongolia University of Technology, Hohhot 010051, China, [2] Management College, Inner Mongolia University of Technology, Hohhot 010051, China
  • 相关基金:This research is supported by the National Natural Science Foundation of China under Grant No. 10761004, the Natural Science Foundation of Inner Mongolia under Grant Nos. 2009MS0107 and 2010MS01116, the Talent Development Foundation of Inner Mongolia (2007), and the Natural Science Foundation of Inner Mongolia University of Technology under Grant No. X200934.
  • 相关项目:非自伴微分算子谱理论及其应用
中文摘要:

当收集敏感信息时,使随机化的反应(RR ) 技术是一个有效调查方法。这份报纸与 polychotomous 为调查采样建议一个新非使随机化的反应模型敏感问题:两价的反应技术。没有代替并且与代替图案,敏感属性和它的评估者变化的比例在简单随机的采样下面被估计。在效率和隐私的保护之间的关系被讨论。结果显示效率在与在新建议模型的隐私的保护的冲突,它在 RR 技术与那一样,但是新技术比 RR 技术在社会学的实践方面有更好的特征,因为它具有低费用,节省的时间并且容易被操作。

英文摘要:

The randomized response (RR) technique is an effective survey method when collecting sensitive information. This paper proposes a new non-randomized response model for survey sampling with polychotomous sensitive questions: Two-valued response technique. The proportion of the sensitive attribute and its estimator's variance are estimated under the simple random sampling without replacement and with replacement designs. The relation between the efficiency and the protection of privacy is discussed. The result indicates that the efficiency is in conflict with protection of privacy in the new proposed model, which is the same as that in the RR technique, but the new technique has better characteristics in sociological practice aspects than the RR technique, because it is of low cost, saving time and being operated easily.

同期刊论文项目
期刊论文 28 会议论文 11 获奖 2
同项目期刊论文
期刊信息
  • 《高校应用数学学报:英文版(B辑)》
  • 主管单位:教育部
  • 主办单位:浙江大学 中国工业与应用数学学会
  • 主编:林正炎 李大潜
  • 地址:杭州玉泉浙江大学数学系
  • 邮编:310027
  • 邮箱:amjcu B@eju.edu.cn
  • 电话:0571-87951602
  • 国际标准刊号:ISSN:1005-1031
  • 国内统一刊号:ISSN:33-1171/O
  • 邮发代号:
  • 获奖情况:
  • 国内外数据库收录:
  • 美国数学评论(网络版),德国数学文摘,荷兰文摘与引文数据库,美国科学引文索引(扩展库)
  • 被引量:26