位置:成果数据库 > 期刊 > 期刊详情页
基于小波分解和极限学习机的短期风速组合预测研究
  • ISSN号:1671-5292
  • 期刊名称:《可再生能源》
  • 时间:0
  • 分类:TM76[电气工程—电力系统及自动化]
  • 作者机构:[1]国网四川省电力公司经济技术研究院成都城电电力工程设计有限公司,四川成都610041, [2]三峡大学新能源微电网湖北省协同创新中心,湖北宜昌443000
  • 相关基金:国家自然科学基金(51207113)
中文摘要:

提出一种基于小波分解(Wavelet Decomposition,WD)和极限学习机(Extreme Learning Machine,ELM)的新型短期风速组合预测模型。首先,采用小波分解将风速序列分解成不同频段的分量,以降低序列的非平稳性;其次,为避免极限学习机输入维数选取的随意性等问题,先对各分量进行重构相空间,再使用改进的极限学习机对各分量分别建模预测;最后,将各分量预测结果叠加得到最终预测结果。实验结果表明,文章所提的组合预测模型具有较高的预测精度。

英文摘要:

This paper studied the short-term prediction of wind speed by means of wavelet decomposition and Extreme Learning Machine. Wind speed signal was decomposed into several sequences by wavelet decomposition to reduce the non-stationary. Secondly, the phase space reconstructed was used to mine sequences characteristics, and then an improved extreme learning machine model of each component was established. Finally, the results of each component forecast superimposed to get the final result. The simulation result verified that the hybrid model effectively improved the wind speed prediction accuracy.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《可再生能源》
  • 中国科技核心期刊
  • 主管单位:辽宁省科学技术厅
  • 主办单位:辽宁省能源研究所
  • 主编:张大雷
  • 地址:辽宁省营口市西市区银泉街65号
  • 邮编:115003
  • 邮箱:kzsny2007@163.com
  • 电话:0417-2832895 2835349
  • 国际标准刊号:ISSN:1671-5292
  • 国内统一刊号:ISSN:21-1469/TK
  • 邮发代号:
  • 获奖情况:
  • 1999-2000年度辽宁省一级期刊
  • 国内外数据库收录:
  • 美国化学文摘(网络版),英国农业与生物科学研究中心文摘,波兰哥白尼索引,美国剑桥科学文摘,中国中国科技核心期刊,中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版)
  • 被引量:10629