位置:成果数据库 > 期刊 > 期刊详情页
基于Retinex图像增强的不同光照条件下的成熟荔枝识别
  • ISSN号:1002-6819
  • 期刊名称:农业工程学报
  • 时间:2013
  • 页码:170-178
  • 分类:TP391.41[自动化与计算机技术—计算机应用技术;自动化与计算机技术—计算机科学与技术]
  • 作者机构:[1]华南农业大学信息学院,广州510642, [2]华南农业大学南方农业机械与装备关键技术教育部重点实验室,广州510642
  • 相关基金:国家自然科学基金资助项目(31201135;31171457;51175189); 广东省自然科学基金(NO:9251064201000009)
  • 相关项目:采摘机器人微扰目标与视觉定位的耦合机理
中文摘要:

为了满足自然环境下荔枝采摘机器人视觉定位系统的有效性和实时性的要求,针对不同光照条件的荔枝彩色图像,采用基于双边滤波的Retinex图像增强算法凸显图像中的荔枝果实和果梗,对增强处理后的图像在HSI颜色空间中进行H分量旋转的处理,再对旋转处理后的H分量进行Otsu自动阈值分割去除荔枝图像果实和果梗外的复杂背景;然后通过将双三次插值算法和传统的模糊C均值(Fuzzy C-Mean)算法融合,对去背景后的荔枝图像在YCbCr颜色空间中进行Cr分量模糊聚类分割,实现荔枝果实和果梗的识别。荔枝图像的分割试验结果表明:该算法对晴天顺光、逆光、遮阴、阴天顺光等光照条件的荔枝图像能够有效地分割,对阴天弱光照、果实被遮阴条件下的荔枝也能较好的识别,并保持荔枝果实和果梗区域的完整性,4种光照条件荔枝图像分割正确率分别为96%、90%、89.3%和88.9%,成熟荔枝识别的正确率达到了90.9%,该研究为水果采摘机器人的室外作业的实时性和有效性提供指导。

英文摘要:

To realize the goal of precise positioning of a picking robot in a natural environment of fruit and vegetables,some problems remain to be solved.The variability of illumination in natural environment is one of the main factors and causes low recognition accuracy and long recognition algorithm running time.In order to meet the effectiveness and real-time requirements of the litchi picking robot visual positioning system in a natural environment,the recognition of ripe litchi in a natural environment was studied.According to the litchi color images in different illumination conditions,to analyze the color features of litchi images a bilateral filtering Retinex image enhancement algorithm was used to highlight the litchi fruit and stem,which was needed to reduce the influence of illumination on litchi image processing and to highlight the recognized target.The color component characteristics in different color spaces of litchi images under different illumination conditions were analyzed to determine the H component rotation in HSI color space to the litchi image after image enhancement processing,which can reduce the influence of uneven illumination under the foundation of maintaining a relative relationship between colors of the original image.According to the bimodal characteristics of the H component grayscale histogram after rotation processing,the Otsu automatic threshold segmentation method for H component image threshold segmentation was chosen to remove the complex background except for the litchi fruit and stem.The fuzzy c-means(FCM) clustering algorithm was then selected to segment the fruit and stem of the litchi image,and due to the characteristics of the artificially given clustering number and low arithmetic speed of the traditional fuzzy c-means clustering algorithm,the fuzzy clustering algorithm was improved.Through the fusion of the bicubic interpolation algorithm and the FCM algorithm,the improved fuzzy c-means clustering algorithm was used in the fuzzy cluster segment of the Cr component in YC

同期刊论文项目
期刊论文 32 会议论文 2 专利 4
同项目期刊论文
期刊信息
  • 《农业工程学报》
  • 北大核心期刊(2011版)
  • 主管单位:中国科学技术协会
  • 主办单位:中国农业工程学会
  • 主编:朱明
  • 地址:北京朝阳区麦子店街41号
  • 邮编:100125
  • 邮箱:tcsae@tcsae.org
  • 电话:010-59197076 59197077 59197078
  • 国际标准刊号:ISSN:1002-6819
  • 国内统一刊号:ISSN:11-2047/S
  • 邮发代号:18-57
  • 获奖情况:
  • 百种中国杰出学术期刊,中国精品科技期刊,中国科协精品科技期刊工程项目期刊,RCCSE中国权威学术期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),英国农业与生物科学研究中心文摘,荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,日本日本科学技术振兴机构数据库,中国中国科技核心期刊,中国北大核心期刊(2004版),中国北大核心期刊(2008版),中国北大核心期刊(2011版),中国北大核心期刊(2014版),英国食品科技文摘,中国北大核心期刊(2000版)
  • 被引量:93231