本项目主要研究Fucík谱意义下的跨共振的Sturm-Liouville边值问题。作为基本的边值条件之一,Sturm-Liouville问题在力学、物理学等领域均具有重要的应用背景,其解的存在性和多重性一直是微分方程定性理论研究的热点。然而对跨共振的一般的Sturm-Liouville问题,人们的研究还很少。对于跨一个共振点情形的Sturm-Liouville边值问题,我们已经得到算子谱集的特征,并给出了最优可解性条件,以及解的具体表达形式。我们将以这些为工作基础,研究跨多个共振点的情况,并给出相应的理论结果。然后,利用这些结果,对Fucík谱意义下的跨共振情形,分析讨论解的存在性和多重性,并将其应用于一般的非线性边值问题。最终,我们旨在建立一种以最优控制理论研究微分方程边值问题解的存在性和多重性问题的框架和方法。
英文主题词Sturm-Liouville boundary value problem;across resonance;Fucík spectrum;optimal solvability condition;periodic solution