本项目研究的非线性次椭圆方程组来源于次Riemann几何、量子物理以及流体力学等领域。次椭圆方程组弱解的正则性是偏微分方程研究的热点之一。本项目重点关注幂零Lie群上的次椭圆方程组,研究其弱解的最优部分正则性,得到最优H?lder指标和最佳奇异集。为了克服向量场的非交换性带来的困难,我们采用如下思想把次椭圆方程组弱解的正则性与幂零Lie群上的调和逼近方法联系起来,通过建立和应用幂零Lie群上的调和逼近理论,得到弱解的最优H?lder连续性。调和逼近理论方面,分别研究超二次和次二次增长条件下的A-调和逼近引理,把欧氏空间的调和逼近理论发展到非交换幂零Lie群上。最优部分正则性方面,利用调和逼近方法取代经典的直接法,分别研究具Dini连续和具VMO不连续系数的次椭圆方程组,建立其弱解的最优H?lder连续性,揭示幂零Lie群上的次椭圆方程组弱解的正则性与调和逼近理论的联系。
英文主题词Nilpotent Lie group;sub-elliptic systems;A-harmonic approximation method;regularity;