采用真空吸渗挤压技术制备了二维正交铺层碳纤维增强铝基(2D-Cf/Al)复合材料,研究了室温下2D-Cf/Al复合材料沿不同方向的压缩性能及其失效行为.研究结果表明:利用真空吸渗挤压技术制备的复合材料的浸渗质量良好,微观组织致密,基体铝合金和纤维分布均匀,无明显缺陷存在;沿垂直于纤维铺层方向的压缩屈服强度约为平行方向的2.5倍,比基体铝合金的压缩强度提高了57%.复合材料的压缩破坏机制与纤维铺层方向密切相关:当压缩载荷垂直于纤维铺层方向时,主要以剪切失效为主;当压缩载荷平行于纤维铺层方向时,主要以界面脱粘和纤维弯折失效为主.
2D cross-ply carbon fiber reinforced aluminum matrix composites were fabri-cated by extrusion directly following vacuum pressure infiltration. The compressive prop-erty and failure mechanism of 2D-Cf/Al composites were investigated at room temperature by applying loadings along different directions with respect to the fiber layer. The results show that the composite with ideal infiltration quality and dense microstructure could be fabricated successfully by extrusion directly following vacuum pressure infiltration the aluminum alloy and fibers are evenly distributed, and seldom defects can be found in com-posite. The compression yield strength perpendicular to the fiber layer is almost 2.5 times as that parallel to the fiber layer. Further analysis shows that the different properties are caused by different failure mechanisms. When the loading direction is perpendicular to the fiber layer, composites failure is mainly caused by shear fracture. When the loading direction is parallel to the direction of fiber, interface debonding and fiber bending failure are the main failure mechanism.