Porous C/C-SiC composites were prepared through a two-step chemical vapor infiltration process,and a multi-interlayer joint of Li20-MgO-Al2O3-SiO2(LMAS) was applied to join C/C-SiC composites and lithium aluminum silicate(LAS) glass ceramics by means of a vacuum hot-pressing technique.Plenty of SiC whiskers were generated in the pores of low-density C/C composites during chemical vapor deposition process,which is essentia! to form a zigzag interface structure between C/C-SiC substrate and the LMAS interlayer.The average shear strength of the LMAS joint was improved from 12.17 to 19.91 MPa after changing the composites from high-density C/C composites(1.75 g/cm3) with a CVD-SiC coating to the C/C-SiC composites with a low density(1.48 g/cm3).The improvement of the joint strength is mainly attributed to the formation of the inlay structure at the SiC-C/C and SiC-LMAS interfaces.
Porous C/C-SiC composites were prepared through a two-step chemical vapor infiltration process,and a multi-interlayer joint of Li20-MgO-Al2O3-SiO2(LMAS) was applied to join C/C-SiC composites and lithium aluminum silicate(LAS) glass ceramics by means of a vacuum hot-pressing technique.Plenty of SiC whiskers were generated in the pores of low-density C/C composites during chemical vapor deposition process,which is essentia! to form a zigzag interface structure between C/C-SiC substrate and the LMAS interlayer.The average shear strength of the LMAS joint was improved from 12.17 to 19.91 MPa after changing the composites from high-density C/C composites(1.75 g/cm3) with a CVD-SiC coating to the C/C-SiC composites with a low density(1.48 g/cm3).The improvement of the joint strength is mainly attributed to the formation of the inlay structure at the SiC-C/C and SiC-LMAS interfaces.