以天然气为炭源气体,采用等温化学气相沉积工艺对孔隙率为89.5%的短切炭纤维毡进行致密化。经过150h的沉积,所制备的炭/炭(C/C)复合材料的密度达到1.89g/cm3。利用PLM、XRD、SEM以及三点弯曲测试对所制备的C/C复合材料的纤维结构和力学性能进行研究。结果表明:沉积的热解炭基体为高织构热解炭;经过高温石墨化处理后,大幅度地提高了材料的晶粒尺寸与石墨化度,降低了材料的强度和模量,并提高了其韧性。这些力学性能的变化与石墨化处理后材料内部显微结构的变化相关。
Short carbon fiber felts with an initial porosity of 89.5% were deposited by isobaric, isothermal chemical vapor infiltration using natural gas as carbon source. The bulk density of the deposited carbon/carbon (C/C) composites was 1.89 g/cm3 after depositing for 150 h. The microstructure and mechanical properties of the C/C composites were studied by polarized light microscopy, X-ray diffraction, scanning electron microscopy and three-point bending test. The results reveal that high textured pyrolytic carbon is deposited as the matrix of the composites, whose crystalline thickness and graphitization degree highly increase after heat treatment. A distinct decrease of the flexural strength and modulus accompanied by the increase of the toughness of the C/C composites is found to be correlated with the structural changes in the composites during the heat treatment process.