设Ф (x)=∑Nn=0anχE(x-n).当E是Z-tile且a是一正有理数时,我们证明了{e2πimxФ (x-na)∶m,n∈Z}成为框架的充要条件是多项式p(z)=∑Nn=0anzn无单位根.此结果推广了Casazza和Kalton的结果[3],并且给出了Weyl-Heisenberg框架与多项式根的相互关系.
Let Ф (x)=∑Nn=0anχE(x-n).When E is a Z-tile and a is a rational number,we show that {e2πimxФ (x-na)∶m,n∈Z} is a frame if and only if the polynomial p(z)=∑Nn=0anzn has no roots on the unit circle.This result extends Casazza and Kalton's result[3] and gives relationships between Weyl-Heisenberg frames and the roots of polynomials.