设I为平面上的单位正方形.{nk}k≥1为正整数序列,对任意的正整数k,nk≥2;{lk}k≥1也为正整数序列;在I上构造的Moran集类记为M(I,{nk},{lk}),应用位势原理证明了对任意的集合E∈M(I,{nk},{lk}),它的Hausdmff维数为dimHE=lim/k→∞ logl1l2…lk/logn1n2…nk.
Suppose I is an unit square on the plane, {nk}k≥1 is a sequence of positive integers with nk≥2 for all positive integer k, and {lk }k≥1 is a sequence of positive integers. Some classes of homogenous Moran sets which are constructed on I will be denoted by M(I,{nk } ,{lk }). This paper discu:sses the Moran sets EEM(I, {nt}, {lk}), it gets their Hausdorff dimension dimHE=lim/k→∞ logl1l2…lk/logn1n2…nk.