对简单图G(V,E)f,是从V(G)∪E(G)到{1,2,A,k}的映射,k是自然数,若,满足(1)u,v∈E(G),u≠,f(u)≠f(v);(2)Vuv,uw∈E(G),v≠w,f(uv)≠f(uw);(3)uv∈E(G),\G(u)\C(v)\≥1并且IG(v)\C(u)1≥1;则称f是G的Smarandachely邻点全染色.本文给出了圈的平方图的的Smarandachely邻点全色数.
Let G be a simple graph, k is a positive integer, fis a mapping from V(G) U E (G) to { 1,2, A, k } such that : ( 1 ) V u, v E(G),u#,f(u) ∈ f(v); (2) Vuv,uw ∈ E(G),v # w,f(uv) # f(uw); (3)Vuv ∈ E(G), [ C(u)/C(v) [t〉 1 # and I C(v) /C(u) I ≥ 1 ; we say thatfis a the smarandaehely adjacent vertex total of graphG. The minimal number ofk is called the sma- randaehely adjacent vertex total chromatic number ofG , In this paper, we discuss the smarandachely adjacent vertex total chromatic number of C2, .