G(V,E)是一个简单图,k是一个正整数,f是一个V(G)∪E(G)到{1,2,…,k}的一个映射.如果u,v∈V(G),则f(u)≠f(v),f(u)≠f(uv),f(v)≠f(uv),C(u)≠C(v),其中C(u)={f(u)}∪{f(uv)|u,v∈E(G)},称f是图G的邻点可区别E-全染色,称最小的数k为图G的邻点可区别E-全染数.文章讨论了扇与轮、完全图的多重联图的邻点可区别E-全色数.
Let G(V,E) be a simple graph,and let k be a positive integer. Assume that f is a mapping from V (G)∪E(G) to{1,2 ,... ,k} . If V(G)∪E(G),we have f(u)≠f(v) ,f(u)≠f(uv),f(v)≠f(uv) ,C(u)≠C(v), where C(u) = {f(u)}∪{f(uv)u,v∈E(G)}, then f is called the adjacent vertex-distinguishing E-total coloring and the minimal number of k is called the adjacent vertex-distinguishing E-total chromatic num- ber of G. The adjacent vertex-distinguishing E-total chromatic number of the multiple join graphs on fan, wheel and complete graph is obtained in this paper.