简单图G的正常边染色f,若对于任意u,v∈V(G),有C(u)≠C(v),称,是图G的点可区别边染色,其中C(u)={f(uv)│uv∈E(G)}。若满足││Ei│—│Ej││≤1(i,j=1,2,…,k),其中任意e∈Ei,f(e)=i(i=1,2,…,k),称f是图G的点可区别均匀边染色。讨论了若干图的Mycielski图的点可区别均匀边染色。
A proper edge coloringf of a simple graph G is called vertex distinguishing edge coloring. If u,v ∈V(G),C(u)≠C(v),C(u)={f(uv)│uv∈E(G)}.If││Ei│-│Ej││≤1(i,j=1,2,…,k),e∈Ei,f(e)=i(i=1,2,…,k),and thus f is called vertex distinguishing equitable edge coloring of graph G. In this paper, we have discussed the vertex distinguishing equitable edge coloring of Mycielski graph of several kinds of graphs.