有影响的二个典型振动系统被考虑其一是 two-degree-of-freedom 影响非强迫的僵硬身体的振动系统,另外的影响一个僵硬振幅站。如此的模型与重复影响在机械系统的动力学的研究起一个重要作用。在 vibro 影响系统的固定的点的二参数的分叉,把强壮的回声与 1:4 联系了,被为地图使用歧管的中心和正常表格方法分析。单个影响的周期的运动和 vibro 影响系统的 Poincar é地图是导出的经分解。稳定性和一个单个影响的周期的运动的本地分叉被使用 Poincar é地图分析。一个中心歧管定理技术被使用把 Poincar é地图归结为二维的,和正常形式地图因为 1:4 回声被获得。在为 1:4 回声的分叉点附近,二个 vibro 影响系统的本地行为被学习。在那里为 1:4 在分叉附近削尖强壮的回声存在时期一单个影响的运动和正切(褶层) 的 Neimark Sacker 分叉时期 4 四影响的运动的分叉,等等。从模拟的结果显示出 vibro 影响系统的动力学的一些有趣的特征:也就是,“圆由与僵绳的稳定、不稳定的 separatrices 一致形成了的异种诊所”, T 在, T 在和 T 外面类型正切(褶层)分叉,与时期四联系的伪周期的影响轨道四影响并且时期八八影响的运动,等等。到混乱的时期 4 四影响的运动的不同线路被数字模拟, vibro 影响系统在展出很复杂的伪周期的影响运动获得。
Two typical vibratory systems with impact are considered, one of which is a two-degree-of-freedom vibratory system impacting an unconstrained rigid body, the other impacting a rigid amplitude stop. Such models play an important role in the studies of dynamics of mechanical systems with repeated impacts. Two-parameter bifurcations of fixed points in the vibro-impact systems, associated with 1 : 4 strong resonance, are analyzed by using the center manifold and normal form method for maps. The single-impact periodic motion and Poincaré map of the vibro-impact systems are derived analytically. Stability and local bifurcations of a single-impact periodic motion are analyzed by using the Poincaré map. A center manifold theorem technique is applied to reduce the Poincaré map to a two-dimensional one, and the normal form map for 1:4 resonance is obtained. Local behavior of two vibro-impact systems, near the bifurcation points for 1:4 resonance, are studied. Near the bifurcation point for 1:4 strong resonance there exist a Neimark-Sacker bifurcation of period one single-impact motion and a tangent (fold) bifurcation of period 4 four-impact motion, etc. The results from simulation show some interesting features of dynamics of the vibro-impact systems: namely, the "heteroclinic" circle formed by coinciding stable and unstable separatrices of saddles, Tin, Ton and Tout type tangent (fold) bifurcations, quasi-periodic impact orbits associated with period four four-impact and period eight eight-impact motions, etc. Different routes of period 4 four-impact motion to chaos are obtained by numerical simulation, in which the vibro-impact systems exhibit very complicated quasiperiodic impact motions.