位置:成果数据库 > 期刊 > 期刊详情页
基于支持向量机算法的微注射成型工艺参数优化
  • 期刊名称:塑料工业
  • 时间:0
  • 页码:27-30
  • 语言:中文
  • 分类:TQ320.662[化学工程—合成树脂塑料工业] TP183[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]国防科技大学机电工程与自动化学院,湖南长沙410073
  • 相关基金:国家自然科学基金资助项目(50735007)
  • 相关项目:阵列波导器件封装制造的基本原理与关键技术
中文摘要:

为了控制菲涅尔透镜在注塑过程中的翘曲变形量,采用支持向量机算法建立了菲涅尔透镜的翘曲预测模型,并对该模型的预测精度进行了研究。采用正交试验法获取注塑工艺参数,各组注塑工艺经Moldflow仿真得出模型的训练样本及检验样本数据。然后,对支持向量机算法建立的翘曲预测模型进行样本学习,训练完毕后由检验样本验证该模型的预测精度。实验结果表明:采用支持向量机算法建立的预测模型预测误差比较稳定,均在0.2%以内。因此,采用支持向量机算法建立菲涅尔透镜的翘曲预测模型可有效地预测菲涅尔透镜的最大翘曲量,且预测的精度与稳定性较高。

英文摘要:

In order to control the warpage of Fresnel lens in micro-injection molding process, the model of non-linear relationship between the injection process parameters and the maximal warpage of Fresnel lens was established through the support vector machine (SVM). Process parameters were designed as orthogonal arrays, and then, the training and testing data could be obtained by numerical simulation. After the simulation, the maximal warpage of Fresnel lens could be predicted using a SVM program based on leaning data extracted from simulation results. Then, the prediction preeision of the model could be proved by testing data. Experimental results indicate that the prediction error of the model was very steadily, and all the error was below 0. 2%. Henee, such a SVM-based model eould accurately predict the maximum product warpage quality with accuration and stability.

同期刊论文项目
期刊论文 40 会议论文 8 专利 9
同项目期刊论文