采用一步电沉积技术同步实现了氧化石墨烯(RGNO)的还原和氧化锌(ZnO)的电沉积,从而制得石墨烯-氧化锌纳米墙(GZNWs)。在形成过程中,氧化石墨烯中可充当活性位点的含氧基团起了关键作用。通过扫描电子显微镜和差分脉冲伏安法,对制得的电化学还原石墨烯-氧化锌复合物(ERGNO-ZnO)的形貌及电化学性质等进行了表征。结果表明,由于具有增强的活性表面积,更精细的结构,超级电子转移能力,具有独特纳米墙形貌的ERGNO-ZnO可望应用于传感领域,其规整排列的纳米墙形貌和大的比表面积为氯霉素(CAP)在电极上的电子交换提供了有利条件。实现了对氯霉素的高灵敏检测,检测范围1.0×10^-7~1.0×10^-3 mol·L^-1,检测限达到6.7×10^-8 mol·L^-1。
One-step co-electrodeposition was applied to prepare graphene-zinc oxide nanowalls(GZNWs)composite,where graphene oxide was electrochemically reduced and zinc oxide was electrodeposited simultaneously.The formation of GZNWs might be ascribed to the oxygen-containing functional groups of GNO,which play a critical role serving as active sites in the preparation of ZnO nanowall arrays.Due to the enlarged active surface area,more subtle structure,and superior electron transfer capability,the GZNWs with special nanowall morphology shows potential applications in sensors.As an example,the unique growth direction and large surface area of GZNWs provided favorable conditions for the electronic exchange of chloramphenicol on the electrode.The morphology and electrochemical properties of the prepared composite were characterized using scanning electron microscopy(SEM)and differential pulse voltammetry(DPV).And the excellent nanocomposite can serve as a highly efficient electrocatalyst for chlor-amphenicol via DPV.The dynamic detection range was from 1.0 × 10^-7 mol·L^-1 to1.0 × 10^-3 mol·L^-1 with a detection limit of 6.7 × 10^-8 mol·L^-1.