The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium(Ti) surface by electrochemical deposition, and calcium phosphate(CaP) coating, as well as bone cell adhesion and proliferation. Methyl group(—CH3), amino group(—NH2), and epoxy group(—glyph name—C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers(SAMs)with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed(including chemical compositions, element content,minerals morphology and crystal structure etc.). CH3- terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite(HA) and precursors. Ca P coating of CH3- terminated SAMs exhibited more excellent crystallization property as compared to coatings of —NH2 and —C(O)C groups. In vitro MC3T3-E1 cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.
The objective of this study was to determine the role of functional groups of silane coupling on bioactive titanium (Ti) surface by electrochemical deposition, and calcium phosphate (CAP) coating, as well as bone cell adhesion and proliferation. Methyl group (-CH3), amino group (-NH2), and epoxy group (-glyph name--C(O)C) were introduced onto the bioactive Ti surface using self-assembled monolayers (SAMs) with different silane coupling agents as molecular bridges. The effect of the surface functional groups on the growth features of the CaP crystals was analyzed (including chemical compositions, element content, minerals morphology and crystal structure etc.). CH3-terminated SAMs showed a hydrophobic surface and others were hydrophilic by contact angle measurement; NH2-terminated SAMs showed a positive charge and others were negatively charged using zeta-potential measurement. Scanning electron microscopy results confirmed that flower-like structure coatings consisting of various pinpoint-like crystals were formatted by different functional groups of silane coupling, and the CaP coatings were multicrystalline consisting of hydroxyapatite (HA) and precursors. CaP coating of CH3-terminated SAMs exhibited more excellent crystallization property as compared to coatings of --NH2 and -C(O)C groups. In vitro MC3T3- El cells adhesion and proliferation were performed. The results showed that CaP coatings on silane coupling functionalized surfaces supported cell adhesion and proliferation. Thus, these functional groups of silane coupling on Ti can form homogeneous and oriented nano-CaP coatings and provide a more biocompatible surface for bone regeneration and biomedical applications.