位置:成果数据库 > 期刊 > 期刊详情页
Bioadaptive Nanorod Topography of Titanium Surface to Control Cell Behaviors and Osteogenic Differentiation of Preosteoblast Cells
  • ISSN号:1005-0302
  • 期刊名称:《材料科学技术学报:英文版》
  • 时间:0
  • 分类:TB[一般工业技术]
  • 作者机构:[1]Department of Stomatology, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China, [2]Guangdong Provincial Key Laboratory of Orthopedics and Traumatology/Orthopedic Research Institute, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510075, China, [3]Department of-Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China, [4]Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Aarhus University Hospital, Aarhus 8000, Denmark, [5]Guangdong Provincial Stomatological Hospital, Southern Medical University, Cuangzhou 510280, China
  • 相关基金:This study was supported by the National Basic Research Program of China (973 Program, No. 2012CB619100), key program of the National Natural Science Foundation of China (No. 31430030), and the Natural Science Foundation of Guangdong Province (Nos. 2014A030310466 and 2013B060300007). We thank Prof. Chengyun Ning and his group from the National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), South China University of Technology for preparation of Ti foil and Ti nanorods.
中文摘要:

Titanium(Ti) nanorods fabricated using selective corrosion of Ti substrate by anodic technology show better biocompatibility with pre-osteoblast cells. The current study investigated the response of the murine pre-osteoblast cell MC3T3-E1 on Ti nanorod topography and untreated Ti surfaces by means of examination of the morphology and osteogenic differentiation responsible for the pre-osteoblast reaction. The morphology of MC3T3-E1 cells was observed using scanning electron microscopy, and alkaline phosphatase(ALP) activity was measured using a colorimetric assay after incubation for 7, 14, and 21 days.The expression of three osteogenic differentiation markers including ALP, osteocalcin(OCN), and collagen type 1A1(COL1A1) and two transcription factors including runt related transcription factor 2(Runx2)and osterix(Osx) at different time points was detected using real-time polymerase chain reaction analysis in both groups. Osx was used to confirm the protein level. The results showed that Ti nanorod surfaces provided prolonged higher levels of ALP activity compared with unmodified Ti surface on the 14 th and 21st days. Gene expression analysis of ALP, OCN, and COL1A1 showed significant upregulation with modified nanorod topography after incubation for 14 and 21 days. Osteogenic transcription factors of Runx2 and Osx exhibited changes consistent with the osteogenic differentiation markers, and this may contribute to the persistently active differentiation of MC3T3-E1 cells in the Ti nanorod group. These results demonstrated that the current nanostructured surface may be considered bioadaptive topography to control cellular behaviors and osteoblast differentiation. The in vivo performance and applicability are further required to investigate osseointegration between implant and host bone in the early stages for prevention of aseptic implant loosening.

英文摘要:

Titanium (Ti) nanorods fabricated using selective corrosion of Ti substrate by anodic technology show better biocompatibility with pre-osteoblast cells. The current study investigated the response of the murine pre-osteoblast cell MCST3-E1 on Ti nanorod topography and untreated Ti surfaces by means of examination of the morphology and osteogenic differentiation responsible for the pre-osteoblast reaction. The morphology of MCST3-E1 cells was observed using scanning electron microscopy, and alkaline phosphatase (ALP) activity was measured using a colorimetric assay after incubation for 7, 14, and 21 days. The expression of three osteogenic differentiation markers including ALP, osteocalcin (OCN), and collagen type 1A1 (COL1A1) and two transcription factors including runt related transcription factor 2 (Runx2) and osterix (Osx) at different time points was detected using real-time polymerase chain reaction analysis in both groups. Osx was used to confirm the protein level. The results showed that Ti nanorod surfaces provided prolonged higher levels of ALP activity compared with unmodified Ti surface on the 14th and 21st days. Gene expression analysis of ALP, OCN, and COL1A1 showed significant upregulation with modified nanorod topography after incubation for 14 and 21 days. Osteogenic transcription factors of Runx2 and Osx exhibited changes consistent with the osteogenic differentiation markers, and this may contribute to the persistently active differentiation of MC3T3-E1 cells in the Ti nanorod group. These results demonstrated that the current nanostructured surface may be considered bioadaptive topography to control cellular behaviors and osteoblast differentiation. The in vivo performance and applicability are further required to investigate osseointegration between implant and host bone in the early stages for prevention of aseptic implant loosening.

同期刊论文项目
同项目期刊论文
期刊信息
  • 《材料科学技术学报:英文版》
  • 中国科技核心期刊
  • 主管单位:中国科协
  • 主办单位:中国金属学会
  • 主编:
  • 地址:中国沈阳文化路72号
  • 邮编:110016
  • 邮箱:
  • 电话:024-83978208
  • 国际标准刊号:ISSN:1005-0302
  • 国内统一刊号:ISSN:21-1315/TG
  • 邮发代号:
  • 获奖情况:
  • 国家“双百”期刊
  • 国内外数据库收录:
  • 俄罗斯文摘杂志,美国化学文摘(网络版),荷兰文摘与引文数据库,美国工程索引,美国剑桥科学文摘,美国科学引文索引(扩展库),日本日本科学技术振兴机构数据库,中国中国科技核心期刊
  • 被引量:474