随着石油储备建设的高速发展,油罐规模正向大型化以及能适应极限工况的方向发展.为了避免油温过低而造成凝罐等安全事故,需要准确掌握罐内油品温度场的变化规律.本文根据能量守恒定律,采用分步式算法求解储罐传热系数,将其代入到由Taylor级数展开法所建立的节点非稳态传热离散方程中,并进行数值求解.对大庆某10×104m3浮顶储罐的应用分析表明:随着环境温度的降低,罐内油品温度降速率逐渐增大,储罐液位越高,容积越大,罐内原油温度就越高,温降速率就越小.研究结果对于优化大型浮顶罐的储存工艺设计,保障油库安全经济运行提供了重要的技术支持.
With the rapid development of oil storage construction, the tank size is developing towards large size and being able to adapt to extreme conditions. In order to avoid oil solidification in the tanks and other safety accidents caused by too low oil temperature, the law of oil temperature field in tanks needs to be calculated accurately. Based on the law of conservation of energy, the heat transfer coefficient of tanks can be solved by fractional steps numerical algorithm, then the unsteady heat transfer discrete equation is solved by numerical method which is set by the Taylor series expansion method. The application analysis of the 10 × 104m3 floating roof tank in Daqing Oilfield shows that, the oil temperature drop rate increases gradually with the decrease of ambient temperature, and the oil temperature is higher and the temperature drop rate is smaller in the tank with higher tank level and larger volume. The research and analysis provide the important data for optimizing the storage design of large floating tanks and ensuring the safety and economic operation of oil depot.