位置:成果数据库 > 期刊 > 期刊详情页
基于二次融合多特征的多聚焦图像融合
  • 期刊名称:数据采集与处理
  • 时间:0
  • 页码:430-436
  • 分类:TP181[自动化与计算机技术—控制科学与工程;自动化与计算机技术—控制理论与控制工程]
  • 作者机构:[1]江南大学信息工程学院,无锡214122, [2]南京理工大学计算机科学与技术学院,南京210094
  • 相关基金:基金项目:教育部新世纪优秀人才计划(NCEG-06-0487)资助项目;国家自然科学基金(60973094,60572034)资助项目;江苏省自然科学基金(BK2006081)资助项目;江南大学创新团队研究计划(JNIRT0702)资助项目.
  • 相关项目:参数化统计新模型及其在图像特征抽取中的应用研究
中文摘要:

以多聚焦图像为研究对象,提出一种新的基于二次融合多特征的融合方法。利用模糊C-均值聚类算法(FCM)在多特征形成的特征空间上对图像区域分割,并在此基础上执行多尺度小波分解。然后,获取源图像区域特征矩阵,经过二维主成分分析(2DPCA)变换后进行特征融合,根据融合后的特征计算区域中每个窗体的特征隶属度。引入模糊指标判断区域中窗体的模糊性,应用模糊熵和窗体能量获得加权因子.从而得到融合图像的小波系数,利用小波逆变换得到融合图像。

英文摘要:

Aimed at the multi-focus images, this paper proposes a new method for image fusion, i. e. , multi-focus image fusion based on second fusion and multi-feature. Firstly, the fuzzy C-means clustering algorithm (FCM) is used to segment image in feature space formed by multiple features of training samples, and then a multi-scale wavelet decomposition is performed on each region. Then, the feature matrix of source images region is obtained and the feature matrix is fused after two-dimensional principal component analysis (2DPCA) transform. The feature membership degree of each window is calculated according to the fusion fea- ture. The fuzzy degree of the image window can be estimated by the fuzziness index. The weighting factors are constructed based on the window energy and the fuzzy entropy. The wavelet coefficients of the fused image are acquired by weighting factors. Finally, the fused image is obtained by taking inverse wavelet transform. The performance of the image fusion method is evaluated by six criteria, including mean, variance, entropy, mutual information, spatial frequencies, and average gradient. The evaluation results indicate that the proposed image fusion method is effective.

同期刊论文项目
期刊论文 126 会议论文 15 获奖 2 著作 1
期刊论文 103 会议论文 19 获奖 5 专利 1 著作 2
同项目期刊论文